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Chapter 1 

Grid Generation for DNS/LES 

1.1    Two-Dimensional Grid Generation 

An elliptic grid generation method first proposed by Spekreuse (1995) is used to generate 2D 

grids. The elliptic grid generation method is based on a composite mapping, which is consisted 

of a nonlinear transfinite algebraic transformation and an elliptic transformation. The algebraic 

transformation maps the computational space C onto a parameter space V, and the elliptic trans- 

formation maps the parameter space on to the physical domain V. The computational space, 

parameter space, and the physical domain are illustrated in Figure 1.1. 
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Figure 1.1: Computational space C, Parameter space P, and Physical domain D 

The computational space C is defined as the unit square in a two-dimensional space with Carte- 
sian coordinates (£,77), and £ 6 [0,1], T/ € [0,1] (see Figure 1.1). The grids are uniformly distributed 
on the boundaries and in the interior area of the computational space. The mesh sizes are jj^zi 

in the £ direction and 7^1 m the T/ direction, where JVf and Nv are the grid numbers in the 
corresponding direction. The parameter space V is defined as a unit space in a two-dimensional 
space with Cartesian coordinate {s, t), and 3 € [0,1], t G [0,1]. The boundary values of a and t are 
determined by the grid point distribution in the physical domain. 

s — 0 at edge Ei and s — 1 at edge £2 

s is the normalized arc-length along edges E3 and E4 

20010221 137 



• t = 0 at edge E3 and t — 1 at edge EA 

• t is the normalized arc-length along edges E\ and £2 

An algebraic transformation s : C -> V is denned to map the computational space C onto 
the parameter space V. The grid distribution is specified by this algebraic transformation, which 
depends on the prescribed boundary grid point distribution. The interior grid point distribution 
inside the domain, generated by the algebraic transformation, is a good reflection of the prescribed 
boundary grid point distribution. Let SE3(Q = s(f,0) and Sß4(f) = s(£, 1) denote the normalized 
arc-length along edges E3 and EA, tEl{r)) = *(0,T?) and *B2(T?) = t{l,rj) denote the normalized 
arc-length along edges E\ and Ei. The algebraic transformation s : C —> V is denned as 

S    =     *a(0(l-*) + *B4(0* (11) 

*    =    tEi(v){l-s)+tE2(v)s 

Equation (1.1) is called the algebraic straight line transformation. It defines a differentiable one- 
to-one mapping because of the positiveness of the Jacobian: s^ — s^ > 0. 

The elliptic transformation x : V -» V, which is independent of the prescribed boundary grid 
point distribution, is defined to map the parameter space V onto the physical domain V. The 
elliptic transformation is equivalent to a set of Laplace equations 

Sxx + Syy     —     0 

*xx  '   *yy     ==    " 

The elliptic transformation defined by the above equations is also differentiable and one-to-one. 

Till now we have defined two transformations, i.e., the algebraic transformation s : C -¥ V, and 
the elliptic transformation x : V —> V. Because both the algebraic transformation and the elliptic 
transformation are differentiable and one-to-one. The composition the two transformation is also 
differentiable and one-to-one, so as to the inverse transformation. 

In physical domain, the curvilinear coordinate system satisfies a system of Laplace equations: 

Ar = 0 (1.3) 

where r = (x, y)T. The inherent smoothness of the Laplace operator makes the grids smoothly 
distributed in the physical domain. Being transformed to the computational space, this Laplace 
system becomes a set of Poisson equations. The control functions is determined by the composed 
transformation according to the following procedures. 

First, Eq.(1.2) is transformed into the computational space C: 

As   -   gns^ + 2gl2siTI + g'22sTr] + A^ + ATisJ, 

At   =   gnt^ + 2gl\v + g^tm + A#e + A^ 



where 511,ff12,?22 are the components of the contravariant metric tensor, which can be calculated 
from the covariant metric tensor 

9U   =   -p922 = {rT,,rT1)lJ
2 

912   =   -j29i2 = -{rz,rr,)/J2 

922   =   ±9u = (rs,rt)/J2 

J is defined as Jdet\gij\. Prom Eq.(1.2) and (1.4), we have 

= 9nPn+2g12Pn + g22P22 (1.5) 

where 

Pi?' 
) = -'( 

I® > I--T-1! ' sZv 

P$ J 1                1 <  ff»7 

P(i) > 
-^22 |~T-'( 

Pll - 

pi2   -        J)     - -T-1 ' (1-6) 

'22 

and the matrix T is defined as 

(1.7) 

Then the Laplace system Eq.(1.3) is transformed to the computational space C: 

gllrK + 2gl2riv + g^r^ + A£rf + A-qr^ = 0. (1.8) 

Substitute Eq.(1.5) into Eq.(1.8), A£ and Arj are replaced by the control functions on the right- 
hand-side of Eq.(1.5), and we obtain the Poisson equations for the grid generation as follows: 

,»rff + 2gl2r,v + g™rm + (g"P$ + 2g"P$ + g^P^r, + (g^P™ + 2g"P$ + *» i£>)r, = 0 

(1-9) 
where the control functions P^ ,P12 \-P22 >MI »^12 1^22 are determined by the algebraic trans- 
formation, as defined previously in Eq.(1.6). 

The elliptic transformation is carried by solving a set of Poisson equations. The control functions 
are specified by the algebraic transformation only and it is, therefore, not needed to compute the 
control functions at the boundary and to interpolate them into the interior of the domain, as 
required in the case for all well-known elliptic grid generation systems based on Poisson systems. 

The computed grids are in general not orthogonal at the boundary. The algebraic transformation 
can be redefined to obtain a grid which is orthogonal at the boundary. First, redefine the elliptic 
transformation by imposing the following boundary conditions for s and t: 



• s — 0 at edge E\ and a = 1 at edge 2% 

. 9s. — o along edges E3 and £4, where n is the outward normal direction 

• t = 0 at edge #3 and t = 1 at edge £4 
t 

• $£- — 0 along edges £1 and 2%, where n is the outward normal direction 

Second, redefine the algebraic transformation 5 : C ->• V according to two algebraic equations, 

s   =   sE3(OH0(t) + 3Bi(0Hi{t) 
t   =   tEl {r))HO{S) +tB2[ri)Hi{8) 

where H0 and ffi are cubic Hermite interpolation functions defined as 

H0{s)   =   (l + 2s)(l-a)2 

Hi{a)   =   (3-2s)s2 

Grid orthogonahty at boundaries is obtained in three steps. 

(1.11) 

1. Compute an initial grid based on the Poission grid generation system with control functions 
specified according to the algebraic straight line transformation denned by Eq.1.1; 

2. Solve the two Laplace equations given by Eq.1.2 with the above specified boundary conditions; 

3. Recompute the g-lu oased on the Poisson system but with control functions specified according 
to the algebraic transformation defined by Eq.1.10. 

The two-dimensional grid near the leading edge of a Joukowsky airfoil is shown in Figure 1.2. 



Figure 1.2: Grid near the leading edge of a Joukowsky airfoil 



1.2    Three-Dimensional Grid Generation 

The basic idea of three-dimensional grid generation is similar to that of the two-dimensional case. 
The computational space is a unit cubic with f € [0,1], T) € [0,1], C G [0,1]. The parameter space is 
a unit cubic with s 6 [0,1], t 6 [0,1], u € [0,1], see Figure 1.3. 

• s = 0 at face Fi and s = 1 at face F2 

• s is the normalized arc-length along edges Ei, E?, 2% and E4 

• t = 0 at face F3 and t = 1 at face F4 

• t is the normalized arc-length along edges E5, EQ, E? and Eg 

• u = 0 at face F5 and t = 1 at face i^ 

• t is the normalized arc-length along edges Eg, Eio, En and E12 

Computatial 
space 

Parameter 
space 

5» 

Physical  space 

3) 

Figure 1.3: Computational space C, Parameter space P, and Physical domain D 

Let *Bl(0 = «(£,0,0), WO - s(£,l,0), Sß3(£) = s(£,0,l), and sE4(0 = «(£,1,1) denote 
the normalized arc-length along edges E\, E2, E3, and E4; tE^iv) = t(0,77,0), tß6(»?) = i(l,7/,0), 
tiivfa) = t(0,T7,1), and tßgfa) = t(l,rj, 1) denote the normalized arc-length along edges JS5, EG, 

E7 and £8; «EetO = «(0,0,0, «£10«) = *(1.0,C), «En(0 = «(0,1,C), and UjBia(C) = U(1,1,IJ) 

denote the normalized arc-length along edges E9, Ei0, En and E\2- The algebraic transformation 
from computational space to parameter space s : C -¥ V is defined as 

3 

t 

u 

*B, (0(i - *)(i - «) + »a(0*(i - «) + *a(0(i - *)« + Wfl*« 
tE6(77)(l - s)(l - «) + *Eb(i?)a(l - u) + tBrWO- ~ s)u + tEa{r])su 

«E9(C)(1 - *)(1 - *) + «E10(C)a(l - *) + «En(0(1 " a)t + uEl2(Ost 

(1.12) 



Equation 1.12 is called the algebraic straight line transformation. 

The elliptic transformation x : V -*■ V, which is independent of the prescribed boundary grid 
point distribution, is defined to map the parameter space V onto the physical domain V. The 
elliptic transformation is equivalent to a set of Laplace equations 

SXx ~r* Syy   '   &zz     —     " 

*xx  >  *yy "T" *zz    —    v 

UlX + Uyy + Uzz       =       0 

(1.13) 

The elliptic transformation defined by the above equations is also differentiable and one-to-one. 

In physical domain, the curvilinear coordinate system satisfies a system of Laplace equations: 

Ar = 0 (1.14) 

where r = (x, y, z)T. 

When the Laplace system Eq.(1.14) is transformed to the computational space C, we obtain a 
Poisson system: 

9nru + g™vm + s33rcc + 2g12r^ + 2g13r^ + 25
23r„c 

+   (9UPh + g^Ph + 0»P& + 2<712P1
1
2 + 25

13P1
1
3 + 2«7

23P2
1
3)rf 

+   foU/ft + g™ Pi + g^P2, + 2«^ + 2g™P2
3 + 2<,23P|3)r„ 

+   (9nP!r + 9^Ph + g^Ph + 2ff12P?2 + 25
13P1

33 + 2ff
23P2

3
3)rc = 0 (1.15) 

where g11, g22, g33, g12, g13, g23 are contravariant metric tensor, which are calculated through the 
covariant metric tensor 

g11   =   j2-(ff22</33 - f/23) 

g22  =   j2-(sii933 - g2
3) 

(911522 - £12) 533  = 

,12 

,13 

-23 

_1_ 
J2 

-p (513523 - 512533) 

=     -«(512523 - 513522) 

=     j2-(5l25l3 - 5235ll) 

The control functions are defined through the composite transformation. 

P11   =   -T-1 

P12   = 

P22 - -T 

'13 

'33 -T 

P23 - -T (1.16) 



and the matrix T is defined as 

T = 
3{     Sv     8{ \ 

k 
H ) 

(1.17) 

The computed grids are in general not orthogonal at the boundary. The algebraic transformation 
can be redefined in a similar way as in the previous section to obtain a grid which is orthogonal at 
the boundary. The three-dimensional grid around a delta wing is shown in Figure 1.4. 

'   A,     ' * *    /    V 

MX'V/V/V/vX/V 

Figure 1.4: Grid around a delta wing 



Chapter 2 

Parallel Computation 

2.1    Introduction 

Parallel computing provides an efficient solution for large scale computations, such as direct nu- 
merical simulation (DNS) and large eddy simulation (LES), which require both large volume of 
memory and high speed. In a parallel computer, several processors can work concurrently on vari- 
ous parts of the the same computation. Some parallel computers, such as SGI Origin 2000, have a 
global memory that can be accessed by all the processors. Such a computer is said to have a share 
memory. Most programming languages and environments shield the programmer from working 
directly with processor. Instead they supply a higher lever concept, called a process, that models 
the activation and a single program on a processor. The shared-memory programming models 
are characterized by the provision of a global memory that can be directly read from and written 
to by every process involved in a computation. Compared with a distributed-memory system, a 
shared-memory computer CZJO. provides a larger band-width for communications between different 

processors. 

Two families of programming models have become widely used. High Performance Fortran 
(HPF) is based on a shared-memory data-parallel model. The other major parallel programming is 
a distributed-memory model with explicit control parallelism, also referred to as a message passing 
programming model. Processes in a message passing programming model are only able to read 
and write into their respective local memory. They synchronize with one another by explicitly 
calling library procedures. Data is copied across local memories by having the appropriate process 
send and receive message via explicit procedure of subroutine calls. The Message Passing Interface 
(MPI) standard defines a set of functions and procedures that implements the message passing 
model. Although the message passing model was originally designed for the distributed-memory 
system, it can also be used for a shared-memory system. A message passing model built on a 
shared-memory infrastructure can achieve a higher speed of data communication because of the 
larger band-width. 

In a shared-memory multi-processor system, such as a SGI Origin 2000 computer, the speed for 
a processor to access the memory on its node-board (local memory) is different from the speed for 
it to access the memory of other processor (remote memory). Therefore, even on a shared-memory 
system, there still will be some overhead caused by data exchange between different processors. 

10 



2.2    Parallel Scheme 

In our computation, the parallel computing is based on MPI. The computer domain is divided into 
Np sub-domains along the £ direction, where Np is the number of processes. The data of each sub- 
domain is stored within the local memory of each pa^essor. Each processor communicates with 
each other using a group functions provided by MPT library. Data exchange between processors 
occurs when the data stored in the local memory of other processor is required. For instance, 
in order to calculate the first and second derivative in the f direction using the compact scheme, 
massive data exchange is achieved by calling the MPI function MPI_ALLTOALL. In some other 
case, when data exchange is required between the interface of two adjacent sub-domain, the MPI 
function MPI.SEND and MPIJtECV are used. 

2.3    Parallel Speedup 

A test code has been used to compare the performance of parallel computing on a SGI Origin 2000 
and a Cray T3E. The SGI Origin 2000 is a single large shared-memory system which is also capable 
to run the MPI code designed for a multiple-instruction multiple-data (MIMD) system. The SGI 
Origin 2000 we are testing has sixteen R10000 MIPS processors at 250MHz and 4GB of memory. 

A MPI code is designed to test the performance of computers. In this testing code, first 
derivative in f, TJ and £ directions is computed using the 4th order compact scheme, which is 
popular high-order scheme in DNS/LES. 

The grid numbers in the three direction are 480, 160, and 80 respectively, which represent a 
moderate scale computation. Several parameters are used to measure the performance of a parallel 
computing. The wall-clock time is the elapsed time of a MPI program which can be obtained by 
calling MPI subroutine MPLWTIME. Speedup is Penned as the ratio of the runtime of a serial 
solution to a problem to the parallel runtime. 

S(n,p) = £&L (2.1) 

where Ts{n) denotes the runtime of the serial program running with one process. Tv(n,p) denotes 
the runtime of the parallel code running with p processes. 

• S(n,p) > p: the parallel program is exhibiting super-linear speedup; 

• S(n,p) — p: the parallel program is exhibiting linear speedup; 

• 1 < S(n,p) < p: the parallel program is exhibiting speedup; 

• S(n,p) < 1: the parallel program is exhibiting slowdown; 

An alternative to speedup is efficiency, which is a measurement of process utilization in a parallel 
program, relative to the serial program. It is defined as 

K  ,v> p pT„(n,p) 

11 



• E(n,p) > 1: the parallel program is exhibiting super-linear speedup; 

• E(n,p) = 1: the parallel program is exhibiting linear speedup; 

• 1/p < E(n,p) < 1: the parallel program is exhibiting speedup; 

• E(n,p) < 1/p: the parallel program is exhibiting slowdown; 

Figure 2.1 presents the wall clock time for 2, 4, 8 16, and 32 processors on Cray T3E. Figure 
2.2 shows a similar result obtained on the SGI Origin 2000 computer. On both machines, the wall 
clock decreases as the number of processors increases. The comparison is displayed in Figure 2.3. 
The wall clock time to run the same case on T3E is about 2/3 of the time on the Origin 2000 for 

2, 4, 8, and 16 processors. 

25 

•15 

12       16       20       24 
Number of processors 

6        B       10      12 
Number of processors 

Figure 2.1: Wall-clock time for different num- 
ber of processors on Cray T3E 

Figure 2.2: Wall-clock time for different num- 
ber of processors on SGI Origin 2000 
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Figure 2.3: Wall-clock time for different number of processors on Cray T3E and SGI Origin 2000 

The performances indicated by speedup of MPI code running on T3E and Origin 2000 are 
displayed in Figure 2.4 and 2.5. The computing of derivative in 77 and £ direction display super- 
linear scalability. Because there is no data exchange in 77 and £ direction, the parallel computing 
is very efficient to calculate derivative in these two directions. On Origin 2000, the super-linear 
speedup can be explained as following. As the number of processor increase, the ratio between the 
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cache of each processor and the data handled by the processor also increase, in other words, more 
data can be put into the cache, which has a faster accessing speed. 

But on T3E, only sub-linear result is obtained. When we submitted the testing MPI job on SGI 
Origin 2000, no other job was running. But our MPI testing code was submitted to T3E running 
with many jobs submitted by other users, and only wall-clock time has been recorded. The speedup 
parameter does not display the linear scalability for calculating derivatives in £ direction, because 
massive data exchange is required by calling the MPI function MPI-A.LLTOALL. The data exchange 
between different processors has reduced the total performance of parallel computing. This extra 
cost for parallel computing is inevitable. The speedup curves as a function of number of processors 
for T3E and Origin are displayed in Figure 2.6. The total speedup of T3E is better than that of 

Origin 2000. 
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Figure 2.4: Speedup for different number of 
processors on Cray T3E 

Figure 2.5: Speedup for different number of 
processors on SGI Origin 2000 
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Figure 2.6: Speedup for different number of processors on Cray T3E and SGI Origin 2000 

The efficiency parameter are displayed in Figure 2.7 and 2.8. On Cray T3E, when the number 
of processors is less than 4, the efficiency for calculating derivative in £ direction and the total 
performance is greater than 1. That means even the T3E is loaded with jobs submitted from 
different users, four processors are always available for our job. Therefore, super linear performance 
is obtained. On Origin 2000, no matter how many processors are used, the efficiency for calculating 
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derivative in rj and £ direction is always greater than 1, which means super linear performance is 
attained. 
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Figure 2.8: Efficiency for different number of 
processors on SGI Origin 2000 
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Chapter 3 

Numerical Simulation of Separated Flow around a 
NACA 0012 airfoil at 12° Angle of Attack 

3.1    Introduction 

It is of particular interest to study the flow separations around airfoils at large angle of attack. Flow 
separations have at least two effects. The first one is the sudden loss of lift, and the second one is 
the generation of aerodynamic noise. These two aspects are crucial to the design of aircraft, and 
these problems can not be solved in the absence of the detailed information about flow separation, 
which is a complex time-dependent physical process. Understanding of the process is still an open 
question for research. However, this kind of problem has importance in instantaneous quantities 
and must studied by DNS or LES at least, but not by RANS (Reynolds-averaged Navier Stokes). 

The spatial and temporal complexity of this problem makes it inaccessible by conventional 
experimental and numerical techniques. From the experimental point of view, as it has been 
pointed out by Shih et al. '1992), that the level of understanding needs to advance from qualitative 
conjectures based on now visualization and/or measurement of global quantities, such as lift and 
drag, to the quantitative measurement of the instantaneous flow field. The prominent feature 
about the flow past an airfoil at large angles of attack is the emergence of large-scale vortices 
when the flow separates from the airfoil surface. The spatial and temporal evolution of these 
vortical structures dominates the unsteady flow behavior over the airfoil. Detailed information, 
such as spatial vorticity distribution at each instance, is required to study in this problem. This 
requirement excludes the use of traditional single-point velocity measurement techniques, such as 
hot-wire anemometry or laser Doppler anemometry. A new experimental technique, particle image 
displacement velocimetry (PIDV), has been used by Shih et al. (1992) to study the unsteady flow 
past a NACA 0012 airfoil in pitching-up motion in a water towing tank. The Reynolds number 
based on the airfoil chord and the freestream velocity is 5000. Instantaneous velocity fields at 
different time have been acquired over the entire 2-D flow field. Using this flow field data, the 
out-of-plane (spanwise) component of vorticity is computed to show the vortical structures. They 
found out that boundary-layer separation near the airfoil leading-edge leads to the formation of a 
vortical structure. Near the leading-edge, vorticity accumulations occurs because of the slowdown 
of the downstream convection as a result of the adverse pressure gradient. The accumulation 
process is eventually interrupted by a sudden emergence of unsteady flow separation, with the 
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immediate release of the accumulated vorticity into the outer flow. This process may be explained 
by the separation model proposed by Van Dommelen & Shen (1980) and Van Dommelen & Cowley 
(1990). This model describes the process of initial breakup of unsteady boundary layer through 
a significant thickening of the boundary layer. In this case, the thickening of boundary layer is 
driven by the reversing fluid layer which is formed as a result of the adverse pressure gradient. 
In the reversed flow region, a streamwise accumulation of boundary layer vorticity occurs. The 
eruption of the boundary layer vorticity lead to formation and shedding of large scale vortical 
structures which are named as the primary vortices from the leading-edge. The primary vortices 
move downstream along the airfoil surface and interact with the local boundary layer below to cause 
the upstream accumulation and eruption of reversal boundary layer vorticity. Near the trailing- 
edge, the primary vortex further triggers the formation and shedding of a count-rotating vortex. 
The unsteady separated flow near the leading-edge and trailing edge of a NACA 0012 airfoil was 
measured in more details by Shih et al. (1995) using particle image velocimetry (PIV) technique. 
In his experiment, the Reynolds number was 5000 and 25000, based on the chord length of the 
airfoil and the freestream velocity. The role of the trailing edge flow was also examined. At the late 
stage, as the primary vortex approach the trailing edge, a counter-rotating vortex is shed from the 
trailing edge. The experimental results obtained by Shih et al. (1992, 1995) will be compared with 
our DNS results in Section 3. It is believed by the authors that the generic characteristics of an 
unsteady separated flow are fairly universal and independent of the Reynolds number and external 
flow conditions. The Reynolds number has effect on the time and length scales of the separation 
structure. For example, the separation structure of a low Reynolds number flow evolves faster than 
a high Reynolds number case. The stronger viscous diffusion of a low Reynolds number flow will 
thicken the boundary layer and thereby attenuate the explosive nature of the unsteady separation 

(Shih et al. 1995). 

For numerical approaches, Tenaud & Phuoc (1997) used large eddy simulation (LES) to study 
separated flow around a NACA 0012 airfoil at 20° angle of attack. Three different flow regions 
following different structure behaviors were obse^ed in their results. The three regions are the 
leading-edge, the middle part of the upper surfarp, and the trailing-edge. The leading-edge region 
is dominated by vortex shedding due to separation of the boundary layer. The second region 
corresponds to the middle part of the upper surface of the airfoil where the eddy structures grow 
and are convected downstream. The last region is situated close to the trailing-edge where alternate 
vortices are created due to the wake instability. The authors did not provide a detailed description 
of the procedure of vortex shedding from the leading-edge and the subsequent evolution of vortical 

structures. 

This work focuses on direct numerical simulation of flow separation around a NACA 0012 
airfoil at a 12° angle of attack. In this case, the following understanding has been obtained from 
the previous theoretical and experimental investigation. First, the large vortices are intermittently 
formed and shed from the leading-edge. Second, the separation leads to an alternation of the 
pressure distribution and therefore changes the lift and moment acting on an airfoil. Thus, the 
aerodynamic forces become unsteady and there is a dramatic decrease in lift accompanied by an 
increase in drag and large changes in the moment exerted on the airfoil. Third, the interactions 
between vortices and between vortices and airfoil surface will generate noise. However, a complete 
understanding of these complex unsteady effects has not yet been achieved, and there is a great 
need for systematic fundamental studies. Understanding of flow separation will provide assistance 
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to improving the separation control and noise control. The main objectives of the present work is 
to reveal the detailed flow separation structures using high-resolution simulation. 

3.2    Governing Equations And Numerical Methods 

The two-dimensional Navier-Stokes equations in generalized curvilinear coordinates (f, 77) are writ- 

ten in conservative forms: _ 
ldQ     d{E-Ev) _ d(F - Fv) 

dr, J dt + dt 
■ + ■ 0 (3.1) 

The flux vectors for flow are 
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where J is Jacobian of the coordinate transformation, and 6E,£V,T?X,% 
are coordinate transfor- 

mation metrics, p is density, p is pressure, u and v are components of velocity. U = v£x + v£y, 
V = UT]X + vr}y. e is the total energy. The components of viscous stress and heat flux are denoted 
by rxx, riy, Tyy and qx, qy, respectively. 

In Eq. (3.1), the second order Euler Backward scheme is used for time discretization, and the 
fully implicit form of the discretized equation is: 

3Qn+1 - 4Qn + Qn^_     ö(^"+1 - F%+1) 

+ 
2JAt 

d{Fn+1 - fy+1) 

dr, 

di 

= 0 (3.2) 

Qn+1 is estimated iteratively as: 
Q"+! = QP + 5Q" 

5QP = QP+1 - QP 

At step p = 0, QP — Qn; as 5QP is driven to zero, Qp approaches Qn+l. Flux vectors are linearized 
as following: 

En+l nE* + Ap6Qp 

pn+i ~pp + BP
6Q

P 
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So that Eq. (3.2) can be written as: 

[ll + AtJ{DeA + DvB)]8Cy = R (3.3) 

where R is the residual: 

R = _(|Q* - 2Qn + ig""1) - AtJ[(£>f(E - Ev) + DV(F - F„)f 

The superscript p stands for iteration step. D$, £>„ represent partial differential operators, A, B 
are the Jacobian matrices of flux vectors: 

A-9E dF 
A~dQ'      *     dQ 

The right hand side of Eq. (3.3) is discretized using the fourth-order compact scheme (Lele, 
1992) for spatial derivatives, and the left hand side of the equation is discretized following LU-SGS 
method (Yoon k Kwak, 1992). In this method, the Jacobian matrices of flux vectors are split as: 

A = A+ + A~,    B = B+ + B~ 

where, 

A±   =   \[A±rAI] 

B±   =   \[B±rBI\ 

where, 

TA = Kmaa;[|A(j4.)|] + v 

TB — Kmax[|A(J3)|] + v 

where \{A), \{B) are eigenvalues of A, B respectively, K is a constant greater than 1. v represents 
the effects of viscous terms. The following expression is used. 

* = ma\-l)M?RepAR) (3-4) 

The first-order upwind finite difference scheme is used for the split flux terms on the left hand 
side of Eq. (3.3). This does not effect the accuracy of the final solution. As the left hand side is 
driven to zero, the discretization error of the left hand side will also be driven to zero; The finite 
difference representation of Eq. (3.3) can be written as: 

[|/ + AiJ(M + rB)/]<5^.= 

*k-AtJ[A-*Q?+1J.-A+«#_1>y 

+B-6CyiJ+1-B+ö%_1   ] 

In LU-SGS scheme, Eq. (3.5) is solved by three steps. First we initialize 6Q° using 

6Ql = [ll + AtJ(rA+rB)I}-1R?J '    '   (3.5) 
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In the second step, the following formula is used: 

5Qh   =   SQl 

+   [ll + AtJ(rA + rB)T]-1 

x   [MJ{A+5Ql.ij + B+6Qtj-i)] (3-6) 

For the last step, SQP is obtained by 

-   [ll + AtJ^+rs)]-1 

x   [AtJiA-SC&u+B-SQSj+J] (3.7) 

The sweeping is performed along the planes of i + j = const, i.e in the second step, sweeping is 
from the low-left corner of the grid to the high-right comer, and then vice versa in the third step. 

In order to depress numerical oscillation caused by central difference scheme, spatial filtering 
is used instead of artificial dissipation. The implicit sixth-order compact scheme for space filtering 
(Lele, 1992) is applied for primitive variables u, v, p,p afte» each time step. 

For subsonic flow, u, v, T are prescribed at the upstream boundary, p is obtained by solving the 
modified N-S equation based on characteristic analysis. On the far field and out flow boundary, 
non-reflecting boundary conditions are applied. Adiabatic, non-slipping condition is used for the 
wall boundary. All equations of boundary conditions are solved implicitly with internal points. 
Specific details of boundary treatment can be found in Jiang et al. (1999). 

3.3    Computational Details 

Direct numerical simulation has been implemented to investigate the compressible flow separation 
around a NACA 0012 airfoil at a 12° angle of attack. The chord length L is taken as the charac- 
teristic length, and the freestream velocity Uoo is the characteristic velocity. The Reynolds number 
based on the chord length and the freestream velocity is Rec = 5 x 105. The freestream Mach 
number is 0.4. 

An elliptic grid generation method first proposed by Spekreijse (1995) is used to generate the 
2-D C-type grids. The elliptic grid generation method is based on a composite mapping, which 
consists of a nonlinear transfinite algebraic transformation and an elliptic transformation. The 
algebraic transformation maps the computational space onto a parameter space, and the elliptic 
transformation maps the parameter space on to the physical domain. The elliptic transformation 
is carried by solving a set of Poisson equations. The control functions are specified by the algebraic 
transformation only and it is, therefore, not needed to compute the control functions at the bound- 
ary and to interpolate them into the interior of the domain, as required by the well-known elliptic 
grid generation systems based on Poisson systems (Thompson et al., 1985). The orthogonality of 
grids on the body surface or near the boundary is attainable by re-configuration of the algebraic 
transformation. 
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In Figure 3.1(a), the body-fitted C-grid around a NACA 0012 airfoil is displayed. The mesh 
near the airfoil surface is shown in Figure 3.1(b) where grids are orthogonal at the boundaries. The 
mesh is tightened near the wall in the wall-normal direction (rj) as well as in the vicinity of the 
leading- and trailing-edge of the airfoil in the direction parallel to the wall (f). The mesh size is 
841 points in the £ direction and 141 points in the 77 direction. 

liplll 

(a) overview of the grids (b) grid near airfoil surface 

Figure 3.1: C-grid around a NACA 0012 airfoil 

3.4    Results And Discussions 

Flow separations around an airfoil with a high angle of attack (a = 12°) has been studied using 
high-resolution numerical simulation. In this case, the fluid flow around the airfoil becomes very 
unstable and different eddy structures are formed in the vicinity of the airfoil. These eddy structures 
severely affect the airfoil's aerodynamic properties. Vortex interactions and the interactions between 
the airfoil and vortex may lead to noise generation. In the present work, effort is concentrated on 
providing a detailed picture of flow separation process. 

The computation starts from freestream conditions and without any perturbation. During the 
numerical simulation, the flow separation process is found to be unsteady and the flow field is 
recorded every 1000 time steps, where the time step is approximately At = 1.767 x lQ~iL/UO0. 
An animation of the flow field has been made based on the recorded data to show the contours of 
the instantaneous spanwise vorticity. Eighteen snap-shorts with equally spaced time intervals are 
extracted from the animation and displayed in Figure 3.2. The time interval between two adjacent 
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frames is about 0.884L/C/. For each frame the region in the vicinity of the trailing-edge are enlarged 
and displayed in Figure 3.3. In both Figure 3.2 and Figure 3.3, the contours of positive vorticity 
are plotted in solid lines and negative vorticity are in dotted lines. 

In frame (a) of Figure 3.2, instability is observed only in the wake near the trailing-edge of the 
airfoil. The vicinity of trailing-edge is enlarged and shown in frame (a) of Figure 3.3. Due to the 
12° angle of attack, a strong shear layer forms at Lhe trailing edge of the airfoil. The presence of 
alternate vortices indicates the Kelvin-Helmholtz type instability, which is well-known in the wake 
where free shear layer appears. 

In frame (b) of Figure 3.2, a separation bubble can be observed on the upper surface of the airfoil 
near the leading-edge. The leading-edge separation bubble is formed when the laminar boundary 
layer separates from the surface as a result of the strong adverse pressure gradient downstream of the 
point of minimum pressure. According to the separation model proposed by Van Dommelen & Shen 
(1980) and Van Dommelen & Cowley (1990), the boundary layer is thickened around the position of 
vorticity reversal due to streamwise accumulation of fluid driven by the adverse pressure gradient. 
The accumulation of vorticity eventually leads to the eruption of the boundary layer vorticity and 
shedding of large scale vortical structures which are named as the primary vortices. The shedding 
of the primary vortices can be observed in every picture after frame (c) of of Figure 3.2. These 
vortical structures are rotating in the clockwise direction and with positive spanwise vorticity. A 
typical case of leading-edge vortex shedding is presented by frame (d) of Figure 3.2 where five 
vortices are sequently shedding from the leading-edge and moving downstream due to convection. 
Similar phenomena are captures by the snapshot in frames (i), (1), (m), (q) and (r) of Figure 3.2. 
Below the primary vortex near the wall, a layer of reversed vorticity is generated due to the induced 
motion of the primary vortex. As a result, the primary vortices are propelled away from the wall 
by the reversed vorticity near the surface. 

In frame (e) of Figure 3.2, two clockwise rotating primary vortices roll around each other at the 
middle of the airfoil's upper surface and eventua"y merge into one large vortex with the original 
rotating direction. The vortex merging is assented with the adverse pressure gradient along 
the upper surface of the airfoil. After departure from the leading-edge, the streamwise propagation 
velocity of the primary vortices is decelerated as a result of the adverse pressure gradient. Therefore, 
a downstream primary vortex, which leaves the leading-edge earlier and slows down due to the 
adverse pressure gradient, will be caught up by an upstream vortex which has a larger convective 
speed. Similar process are seen in frames (h), (o), and (p) of Figure 3.2. 

The vortex originated from the the merging of two primary vortices seems to re-attach on the 
upper surface of the airfoil. It interacts with the local boundary-layer and induces an upstream 
accumulation and eruption of a reversed boundary-layer vorticity from the wall, see frame (f) of 
Figure 3.2. In this frame another event of vortex merging is observed near the one-third chord 
position. The accumulated reversed vorticity leaves the wall as a result of the induced motion by 
the downstream primary vortex and evolves into a vortex with negative spanwise vorticity, shown 
in dotted isovorticity contours in frame (f) of Figure 3.2. This induced vortex interacts with the 
primary vortex to form a counter-rotating vortex pair. A typical vortex pairing phenomenon is 
presented in frames (g) of Figure 3.2 where two vortex pairs are observed. Similar phenomena 
of vortex pairing have been described in experiment of Shih et dl. (1992). The vortex pairs are 
propelled from the wall by a self-induced motion, whereas they encounter a faster convective motion 
and move downstream more quickly.   At the same time, the vortex pairs experience substantial 
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deformation due to the difference in streamwise velocity of the main flow close to wall and that far 
from the wall. Because the far end of the vortex pair moves faster than the near-wall end, the vortex 
pair is stretched in the streamwise direction, as shown in frame (h) of Figure 3.2. The vortex pah- 
is dominated by the clockwise rotating primary vortex which is stronger than the reversed vortex. 
And streamwise stretching occurs to the clockwise rotating primary vortex. In frame (h), the 
downstream vortex pair shown in frame (g) merges with an another vortex pair which comes from 
the wall. This vortex merging can be seen more clearly in frame (h) of Figure 3.3. In frame (i) 
of Figure 3.2, all these vortex pairs shown in frame (g) and (h) seem to merge with each other to 
form a more complex vortex system near the trailing edge of the airfoil. 

When the dominating clockwise-rotating part of the vortex system sweeps over the trailing 
edge of the airfoil, a counterclockwise-rotating vortex which can be seen in frame (h) of Figure 3.3 
appears at the trailing-edge. This vortex is named as the trailing-edge vortex, which is generated 
due to the induced motion of the clockwise-rotating primary vortex. As clockwise-rotating primary 
vortex reaches the trailing-edge, it introduces a local low pressure region which drives the lower 
surface of the separating shear layer to curve upward and move across the wake into the upper 
stream. Then, induced by the clockwise-rotating primary vortex, the shear layer quickly rolls into 
an intense counterclockwise-rotating trailing-edge vortex. This process is observed clearly in frame 
(h) and (i) of Figure 3.3. Similar phenomenon was also reported in experiments (Shih et al. 1992, 
1995). 
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Figure 3.2: Contours of spanwise vorticity at different time. Re = 5 x 105, a = 12° 
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Figure 3.3: Enlarged pictures near the trailing edge for contours of spanwise vorticity at different 
time. Re = 5 x 105, a = 12° 
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In frame (j) of Figure 3.3, the trailiiig-edge vortex is pushed away from the wall due to a self- 
induced motion as the vortex grows. The trailing-edge shear layer seems to stick to the downstream 
edge of the large-scale trailing-edge vortex and is stretched as the trailing-edge vortex is propelled 
away from the wall. A chain of small-scale counterclockwise-rotating vortical structures appears 
along the shear layer dur to the Kelvin-Helmholtz type instability. Finally the trailing-edge vortex 
separates from the shear layer to form a vortex pair with a clockwise-rotating primary vortex and 
diffuses away from the trailing-edge, as shown in frame (j) and (k) of Figure 3.2. As the trailing- 
edge vortex leaves the trailing edge, pressure recovers near upper surface. Therefore, the shear 
layer moves back and settles along the streamwise direction, see frames (k) and (1) of Figure 3.3. 
The Kelvin-Helmholtz type instability structures are still visible along the shear layer until another 
large-scale primary vortex approaches the trailing-edge and leads to the generation of another 

trailing-edge vortex. 

In the results presented in this paper, the leading-edge vortex continues to shed and convect 
downstream. Along the upper surface of the airfoil, vortex merging occurs due to the adverse 
pressure gradient. The leading-edge primary vortex interacts with local boundary layer and triggers 
reversed vorticity accumulation and eruption, which in turn evolves into the counterclockwise- 
rotating vortical structures to form vortex pairs with the primary vortex. When these large-scale 
vortical structures arrive the trailing-edge, a reversed vortical structure is induced from the trailing- 
edge. This counterclockwise-rotating vortex moves away from the wall by a self-induced motion 
and separate with the shear layer to interact with the primary vortex and form a vortex pair, 
which diffuses away from the trailing-edge and moves downstream. Therefore, the generation of 
the trailing-edge vortex is a quasi-periodic process which can be seen from frame (a) through (r) 
of Figure 3.2 and Figure 3.3. 

To obtain the spectrum information about flow separation, twelve points are selected near the 
airfoil surface and in the wake to record the time series of instantaneous velocity and pressure. The 
location of these points are denoted by PI - P12 and shown in Figure 3.4. Points PI - P10 locate 
above and very close to the suction surface of the airfoil. Points Pll, P12 are in the wake. 

piopiipn 

Figure 3.4: Location points PI - P12 where the time series are recorded 

The instantaneous fluctuations of the streamwise velocity and pressure at location point PI and 
their power spectrum are displayed in Figure 3.5 - Figure 3.8. Here, the mean flow are defined based 
on the temporal average. Figure 3.6 shows the power spectrum of streamwise velocity fluctuations, 
where the first peak associated with the slow variation of mean flow is ignored. The frequency of 
the second and the'third peak is / = 1.28, / = 1.81. In this case, the vortices shed from the leading 
edge intermittently, as it can be seen in Figure 3.5, where the high frequency oscillations of u' are 
linked to vortex shedding. In the spectrum of Figure 3.6, the high frequency is / = 1.81, which 
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reflects the frequency of continuous vortex shedding. The lower / = 1.28 is thought to reflect the 
intermittent feature of vortex shedding. The spectrum of pressure fluctuations exhibit almost the 
same peak frequency, e.g. / = 1.28 and / = 1.79. 

Figure 3.5:  Instantaneous streamwise velocity at 
location point PI 

Figure 3.6: Power spectrum density of 
v! at location point PI 

Figure 3.7: 
point PI 

Instantaneous pressure at location Figure 3.8: Power spectrum density of 
p' at location point PI 

Figure 3.9 - 3.12 show the time series of streamwise velocity, pressure and their spectrums at 
point P3. At this point, the signals of streamwise velocity and pressure are similar to those at 
point PI. The frequencies obtained from the velocity and pressure signals are almost the same. 
The peak frequency is / = 1.70, which is close to the vortex shedding frequency at PI. 

Figure 3.13 - 3:16 show the time series of streamwise velocity and pressure and their spectrums 
at point P5. The instantaneous velocity and pressure are more regular compared with those at PI. 
As a matter of fact, the signals recorded at P5 represent the reattachment of the primary vortex, 
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Figure 3.9:  Instantaneous streamwise velocity at 
location point P3 

Figure 3.10: Power spectrum density of 
u' at location point P3 

Figure 3.11:   Instantaneous pressure at location 
point P3 

Figure 3.12: Power spectrum density of 
p' at location point P3 

as it is displayed in frames (f) (h) of Figure 3.2. The primary vortices shed from the leading edge 
rotate clockwise. When a vortex reattaches near point P5, which is close to the wall, the recorded 
streamwise velocity decrease, while the vortex also causes the pressure to decrease. Therefore, the 
streamwise velocity signal is in phase with pressure signal, as it is shown in Figure 3.13 and Figure 
3.15. In Figure 3.13 and Figure 3.15, the low velocity and low pressure points are corresponding 
to the vortex reattachment. The frequencies obtained from the velocity and pressure signals are 
almost the same. The frequency corresponding to the vortex reattachment is f — 0.29. 

Point P9 locates right above the suction surface near the trailing edge.  In Figure 3.3, large 
scale vortex is found near the trailing edge. The signals recorded at point P9 is used to analyze the 
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Figure 3.13: Instantaneous streamwise velocity at 
location point P5 

Figure 3.14: Power spectrum density of 
u' at location point P5 

Figure 3.15:   Instantaneous pressure at location 
point P5 

Figure 3.16: Power spectrum density of 
p' at location point P5 

frequency feature of the trailing edge vortex. The instantaneous fluctuations of streamwise velocity 
and pressure at P9 and their power spectrum are displayed in Figure 3.17 - Figure 3.20. Both the 
velocity and pressure signals at point P9 are dominated by low-frequency oscillations. It is also 
interesting to notice that at this point, the streamwise velocity is opposite in phase to pressure; 
i.e., the streamwise velocity decreases as pressure increases. A brief explanation is given here based 
on the fact that the trailing vortex rotates counterclockwise. As the trailing vortex appears, at 
point P9 close to wall, the induced motion of the vortex increases the streamwise velocity, while 
the pressure decreases. At this point, the peak frequency for velocity is / = 0.24 and / = 0.28 for 
pressure. 

Now we focus on the next location point Pll, which locates in the wake but still close to the 
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Figure 3.17: Instantaneous streamwise velocity at 
location point P9 

Figure 3.19:   Instantaneous pressure at location 
point P9 

Figure 3.18: Power spectrum density of 
u' at location point P9 

Figure 3.20: Power spectrum density of 
p' at location point P9 

trailing edge. High-frequency oscillations appear on streamwise velocity and pressure displayed in 
Figure 3.21 and 3.23, respectively. The high-frequency oscillations associated with the small-scale 
vortex structures appear from the trailing edge along the edge the large-scale trailing edge vortex, 
as shown in frames (i), (j) (k) of Figure 3.3. The high-frequency parts are modulated by the 
low-frequency signals corresponding to the large-scale trailing edge vortex. 

Point P12 locates at downstream of Pll, the signals recorded at initial stage at P12 correspond- 
ing to frame (a) to (c) in Figure 3.3 are displayed from Figure 3.25 to Figure 3.28. The regular 
pattern of the velocity and pressure indicate the typical Kelvin-Helmholtz type instability. 
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Figure 3.21: Instantaneous streamwise velocity at 
location point Pll 
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Figure 3.22: Power spectrum density of 
u' at location point Pll 

Figure 3.23:   Instantaneous pressure at location 
point Pll 

Figure 3.24: Power spectrum density of 
p' at location point Pll 

3.5    Conclusions 

Direct numerical simulation is carried out by solving the full Navier-Stokes equations in generalized 
curvilinear coordinates to study the separation flow around a NACA 0012 airfoil at large angle of 
attack. By using a fourth-order centered compact scheme for spatial discretization, the small-scale 
vortical structures are resolved, which will dissipate if low-order numerical schemes are used. Non- 
reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible 
non-physical wave reflection. 

The DNS results clearly describe the flow separation process at the upper surface of the airfoil. 
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Figure 3.25:    Eaxly stage of the instantaneous 
streamwise velocity at location point P12 

Figure 3.26: Power spectrum density of 
signal u' in Figure 3.25 

Figure 3.27: Early stage of the instantaneous pres- 
sure at location point P12 

Figure 3.28: Power spectrum density of 
signal p' in Figure 3.27 

The phenomena of the leading-edge separation, vortex shedding, vortex merging, vortex pairing, 
and formation and shedding of large-scale trailing edge vortex are displayed and discussed in detail. 
The small-scale vortices associated with the Kelvin-Helmholtz instability are also observed along the 
shear layer near the trailing-edge. These phenomena are in good agreement with the experimental 
results obtained by Shih et al. (1992, 1995). 
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Chapter 4 

Numerical Simulation of Flow Instability around a 
Delta Wing 

4.1    Introduction 

Recent developments in aerospace technology have revived the interest to the study of flow separa- 
tions around an aircraft maneuvering dynamic operations. Understanding of the complex separated 
vortical flow is crucial to the aerodynamic design of modern aircraft. Vortical structures, which 
develop over the leading-edge extension, slender fore-body, and main wing, may have severe effect 
on the aerodynamic characteristics and performance of modern fighter aircraft. 

A flat-plate delta wing with sharp leading-edge provides a simple configuration to investigate 
the development of the vortical structures. Both experimental and computational results have 
shown that the flow over the suction side of a delta wing at a fixed angle of attack is dominated 
by a pair of counter-rotating vortices, i.e. the leading-edge primary vortices. These vortices are 
formed as a result of the rolling-up of the vortex sheet shedding from the loading-edge. The flow 
induced by the leading-edge vortices separates near the wing surface and lorms a pair of oppositely 
rotating secondary vortices. The size and strength of the leading-edge vortices increase with the 
angle of incidence, resulting in a substantial nonlinear lift increment. But the maximum lift of a 
delta wing is limited by a phenomenon known as vortex breakdown(Visser & Nelson 1993). 

In the experimental study using dye visualization carried out by Gad-el-Hak and Balckwelder 
(1985), small-scale vortices were observed shedding from the leading-edge and feeding into the 
rolling-up process associated with the large-scale leading-edge vortices. In their study, the small- 
scale vortices were paired, and were believed as the origination of the classical leading-edge vortices. 
Payne et al. (1988) used smoke flow visualization and laser sheet technique to study the vortical 
flow field above the delta wing at high angles of attack. Two types of vortex breakdown were 
testified, i.e. the bubble mode and the spiral mode. In the same experiment, static small-scale 
vortical-like structures were found in the shear layer of a delta wing with a 85° sweep angle and 
a 40° angle of attack. The growth of these structures was found to be similar to the evolution of 
the classic Kelvin-Helmholtz instability. In this experiment, the pairing of the small-scale vortices 
was not observed.. The recent experimental work of Rieley & Lowson (1998) revealed, using flow 
visualization and hot-wire measurement, the existence of static small vortical structures in the 
free shear layer shedding from the sharp leading-edge of a delta wing. A local three-dimensional 
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Kelvin-Helmholtz-type instability was suggested by the authors for the formation of these vortical 
structures in the free shear layer. Similar vortical structures were also observed in the investigations 
of Cipolla & Rockwell (1998), where small-scale concentrations of vorticity form near the leading- 
edge of a rolling delta wing. These vortices appear to evolve in a coupled fashion, which has been 
considered as the wake-like instability. 

Numerical simulations of vortex breakdown above a stationary sharp edged delta wing over 
a range of angles of attack were carried out by Modiano & Murman (1994). Their computation 
was based on an Euler solver with adaptive mesh system. The spiral form of vortex breakdown 
was observed without the emergence of the small-scale vortical structures inside the shear layer. 
In the numerical investigation by Argwal et al. (1992), the well-known Euler/Navier-Stokes code 
CFL3D was used to simulate the leading-edge vortex breakdown of a low-speed flow on a flat-plate 
delta wing with sharp leading-edges. Although the vortex breakdown positions obtained from the 
computation were reported in good agreement with experimental data, the small-scale vortices were 
not observed, which could be attributed to the lack of numerical resolution/accuracy. A numerical 
investigation of the unsteady vortex structure over a 76° sweep wing at 20.5° angle of attack was 
carried out by Gordnier & Visbal (1994). Their numerical calculation indicated that the small-scale 
vortical structures emanated from the leading-edge was brought on by the Kelvin-Helmholtz-type 
instability. Pairing of the small vortices was not observed in the computational results. 

The intention of present work is to study the mechanism of vortex breakdown above a slender 
flat-plate delta wing with sharp leading-edges at a fixed angle of attack. Direct numerical simulation 
is employed to give a detailed description of flow instability and vortex shedding near the leading- 
edge of the delta wing. 

4.2    Governing Equations 

The three-dimensional compressible Navier-Stokes equations in generalized curvilinear coordinates 
(f, 77, £) are written in conservative forms: 

J dt d£ 

The flux vectors for compressible flow are 
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wheres J.is Jacobian of the coordinate transformation, and ZxjZyiZziVxiVyiVzXxXyXz are coordi- 
nate transformation metrics, T^J'S and q^s are the viscous stress and the heat flux, respectively. 

In Eq.  (4.1), second order Euler Backward scheme is used for time derivatives, and the fully 
implicit form of the discretized equations is: 

3Qn+1 - AQn + Qn^_     d{En+1 - ££+1) 

a = - 

2JAt 9e 

+ 

Qn+1 is estimated iteratively as: 

where, 

d(Fn+1-F^+1)     d(Gn+l - gg+1) 
dr) ■ + 

öC 

Q 
,n+l QP + SQP 

(4.2) 

(4.3) 

6QP = Qp+1 - Qp (4.4) 

At step p = 0, Qp = Qn; as SQP is driven to zero, Qp approaches Qn+1. Flux vectors are linearized 
as follows: 

£"+1 fts E" + Ap6Qp 
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So that Eq. (4.2) can be written as: 

where R is the residual: 

[h + AtJ{DzA + DnB + D<;C)]5Qp = R (4.6) 

R = -{\Qp-iQn + \Qn-l)-teJ[{DdE-E») 

+   DV(F-FV) + DQ(G-GV)Y 

D^,Dv,Dc, represent partial differential operators, and A, B, C are the Jacobian matrices of flux 

<-$   -&   -g 
The right hand side of Eq. (4.6) is discretized using fourth-order compact scheme (Lele, 1992) 

for spatial derivatives, and the left hand side of the equation is discretized following LU-SGS method 
(Yoon & Kwak, 1992). In this method, the Jacobian matrices of flux vectors are split as: 

A = A+ + A~,    B = B+ + B~,    C = C+ + C~ 

where, 

(4-8) 

and, 

TA — Kmax[\X{A)\] + i> 

TB — /cmai[|A(B)|] + v 

re = Kmax[\\{C)\] 4- v 

where X(A), \{B), X(C) are eigenvalues of A, B, C respectively, K is a constant greater than 1. v is 
taken into account for the effects of viscous terms, and the following expression is used: 

A± =   \[A±rAI\ 

B± =   \[B±rBI\ 

C± =   \[C±rcT\ 

max] 
{1-l)M?RePr

,3Re 

The first-order upwind finite difference scheme is used for the split flux terms in the left hand 
side of Eq. (4.6). This does not effect the accuracy of the scheme. As the left hand side is driven 
to zero, the discretization error will also be driven to zero. The finite difference representation of 
Eq. (4.6) can be written as: 

[\l   + MJ{TA+rB + rc)I]5(ri>j,k=RVj,k 

-AtJ     [ ASQV+w-A+SQ*^ 

+ B-S%+l,k-B+5Cfid_ltk 

+ CSQtj^-C+SCXj*-!   ) (4-9) 
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In LU-SGS scheme, Eq. (4.9) is solved by three steps. First initialize SQ° using 

SQh,k = [p + ±tJ(rA +rB + TC)I]-lRp
i>j)k 

In the second step, the following relation is used: 

SQ'iM = 6Ql<k + [|/ + AtJ(rA + rB + rcW1 

x[AtJ(A+6QUj,k + B+5Q*itj_ltk + C+SQtj^)] 

For the last step, SQP is obtained by 

x[AtJ(A-6C?i+l>jtk + B-SCTitj+ltk + C-6<yiJM1)) 

The sweeping is performed along the planes of i+j+k — const, i.e. in the second step, sweeping 
is from the low-left corner of the grid to the high-right corner, and then vice versa in the third step. 

In order to depress numerical oscillation caused by central difference scheme, spatial filtering is 
used instead of artificial dissipation. Implicit sixth-order compact scheme for space filtering (Lele, 
1992) is applied for primitive variables u, v, w, p,p after each time step. 

For subsonic flow, u,v,w,T are prescribed at the inflow boundary, p is obtained by solving 
modified N-S equation based on the characteristic analysis. On the far field and out flow boundary, 
non-reflecting boundary conditions are applied. Adiabatic, non-slipping conditions are used for the 
wall boundary. All equations of boundary conditions are solved implicitly with internal points. 
Specific details of boundary treatment can be found in Jiang et al (1999). 

4.3    Computational Details 

Direct numerical simulation has been implemented to investigate the compressible flow separation 
around a slender delta wing. The geometry of the delta wing, taken from the experimental work 
of Rieley & Lowson (1998), is shown in Figure 4.1. The sweep angle denoted by A is 80° and the 
leading-edge angle denoted by a is 30°. The chord length is taken as the characteristic length L, 
such that the non-dimensional chord length is c = 1.0X. The non-dimensional thickness of the delta 
wing is h — 0.024L. The freestream velocity Uoo is the characteristic velocity. 

An H-C type mesh system for a half-plane model of the delta wing is used based on the as- 
sumption that the flow is symmetrical to the the half-plane. The mesh is H-type in the meridian 
section and C-type in the cross section. An elliptic grid generation method, first proposed by 
Spekreijse (1995), is used to generate the three-dimensional grids. This method is based on a 
composite mapping, which is consisted of a nonlinear transfinite algebraic transformation and an 
elliptic transformation. The grids are orthogonal on the delta wing surface. The sharp leading-edge 
is approximated by a round edge with a small radius of 1.0 x 10~3L, while in the experiment of 
Rieley & Lowson (1998), the average thickness of the leading-edge was 0.12 mm, which was approx- 
imately 2.55 x 10_4L. Computations are carried out on two grid systems, i.e. the low resolution 
mesh with 140 x 70 x 70 grid nodes and the high resolution mesh with 180 x 150 x 70 grid nodes, 
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Figure 4.1: Schematic of the delta wing 

Figure 4.2: H-C type grid around a 85° sweep deH.. wing 

where the sequence of numbers is corresponding to the axial, the spahwise and the wall-normal 
direction, respectively. An example of the three-dimensional grid is displayed in Figure 4.2. 

The parallel version of the DNS code based on the Message Passing Interface (MPI) has been 
developed to accelerate the computation. Although massive data exchanges are required for com- 
puting the derivatives with the compact finite difference scheme, the speedup is still substantial. 
On a SGI Origin 2000 computer, the performance of the MPI code is superior to the serial code, 
which is compiled using the automatic parallelization option provided by Fortran 90 compiler. The 
comparison are displayed in Figure 4.3, where the speedup parameter S(n,p) is defined as the ratio 
of the runtime of a serial solution to a problem to the parallel runtime. Linear speedup has been 
achieved for MPI code running on 4, 6, and 15 processors. The final parallel computation for the 
higher Reynolds number case with a mesh of 180 x 150 x 70 is conducted using 10 processors on a 
SGI Origin 2000 computer. 
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Figure 4.3: Speedup S(n,p) of the MPI code compared with the serial code complied with automatic 
parallelization option 

4.4    Results and Discussions 

4.4.1    Low Reynolds number case 

All results presented here are obtained from direct numerical simulation of flow around a 85° 
sweep delta wing with a flat-plate suction surface, which has been introduced in Section 3. The 
angle of attack is fixed at 12.5°. The free-stream Mach number is Ma — 0.1. For the lower 
resolution simulation, the Reynolds number based on the chord length and the free-stream velocity 
is Rec = 5 x 104. No initial and boundary disturbance are imposed in the simulation. 

The contours of the axial vorticity on selected cross sections are displayed in Figure 4.4. It 
is quite clear that a pair of counter-rotating vortices, so called the leading-edge primary vortices, 
appears over the suction side of the delta wing. These vortices form as a result of flow separation 
and the rolling-up of the vortex sheet shedding from the leading-edge. The primary vortices are 
steady and stable in this low Reynolds number case. The primary vortices are composed of a 
pair of counter-rotating oblique vortex tubes starting from the apex of delta wing, from a three- 
dimensional point of view. Beneath the primary vortices, near the upper surface of the delta wing, 
the secondary vortices, which have an opposite rotating direction to the primary vortices, are formed 
as a result of the spanwise outflow induced by the primary vortex. Figure 4.5 shows the three- 
dimensional instantaneous streamlines starting from vicinity of the leading-edge. The streamlines 
also reveals the existence of the cone-shaped primary vortices. The computational results are in 
good agreement with the experimental results of Riley & Lowson (1998). During the computation 
for the high Reynolds number case, the flow becomes unsteady and small-scale vortical structures 
keep shedding from the leading-edge. In the experiment of Riley &: Lowson (1998), flow instability 
was observed when the Reynolds number was raised above Rec — 100,000. In order to study the 
flow instability near the leading edge, the numerical simulation with a higher resolution and higer 
Reynolds number has been implemented, and the results are discussed in next section. 
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Figure 4.4: Contours of the axial vorticity Figure 4.5: Three-dimensional streamline 
on selected cross sections, angle of attack above the suction surface of a 85° sweep 
a = 12.5°, Re = 5 x 104, Ma = 0.1 delta wing at an angle of attack a = 12.5°, 

Re = 5 x 104, Ma = 0.1 

4.4.2    High Reynolds number case 

At higher Reynolds number, i.e. Rec — 1.96 x 105, which is the same as the one chosen by Riley & 
Lowson (1998) in their experimental study, where the flow instability occurs near the leading edge 
of the delta wing. In order to capture the small vortical structures observed in the experiment, the 
numerical simulation is accomplished on a mesh with a higher resolution of 180 x 150 x 70. During 
the simulation, flow instability and periodic shedding of small vortical structures are observed. 
Since there is no disturbance imposed as the initial or boundary condition for the computation, the 
unstable behavior presented by the flow in the computational results are rather intrinsic. 

The distributions of the instantaneous axial vorticity on various cross sections are shown in 
Figure 4.6. Compared with the low Reynolds number results of Figure 4.4, the flow is still dominated 
by a pair of primary vortices. But instability appears at the leading-edge Of delta wing, where vortex 
shedding is observed. On the suction surface near the leading-edge, the secondary vortices are still 
visible in this figure. 

In Figure 4.7 the contours of axial vorticity at different time on a cross section at x = 0.87L 
are displayed through (a) to (h), each frame is corresponding to a snapshot of a two-dimensional 
flow field at a certain time. Flow instability is quite obvious in these figures. The primary vortex 
deforms compared to the low Reynolds number case. The flow pattern inside the primary vortex 
resembles that of the spiral instability mode, which presented occasionally in the experiment of 
Rieley & Lowson(1998). Two strong shear layers are visible through the concentration of axial 
vorticity contours. The first one is the leading-edge shear layer whose axial vorticity is positive 
(shown in light color in Figure 4.7), which wraps the leading-edge corner from below and feeds 
into the primary vortex. The other one lies between the primary vortex and the upper surface 
of the delta wing and has a negative axial vorticity (shown in dark color in Figure 4.7), which is 
associated with the secondary vortex. Therefore, the shear layer below the primary vortex is also 
called the secondary shear layer. As it will be discussed later, both the leading-edge shear layer 
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Figure 4.6: The instantaneous distributions of the axial vorticity on various cross sections. Angle 

of attack a = 12.5°, Re = 1.96 x 105, Ma = 0.1 

and the secondary shear layers are related to the instability and vortex shedding procedure near 

the leading-edge. 

Among the small-scale vortical structures shedding from the leading-edge, there are two types of 
vortices, distinguished by the direction of rotation or by the sign of axial vorticity. Those vortices 
whose rotating direction is the same as the primary vortex are named as the A-family vortices, 
which are corresponding to a positive axial vorticity component. The vortices rotating in the 
opposite direction as the primary vortex are called the B-family vortices and have a negative axial 
vorticity component. The A-family vortices are much stronger than the B-family vortices, which 
can be recognized from the contours of the axial vorticity in Figure 4.7. 

In Figure 4.7(a), a bulge is observed on the leading-edge shear layer. The bulge grows in size 
as it moves away from the leading edge, as shown in Figure 4.7(b), (c), and (d). This process is 
corresponding to the generation and shedding of the A-family vortex. Because the B-family vortices 
are very weak, the = aedding process of B-family vortices is not clear in Figure 4.7. A more detailed 
study reveals tha* tue B-family vortex comes from the shedding of the secondary vortex. 
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(a) t = 55.54L/UO, 

(c) t = 55ML/U„ 

(e) t = 5Q.09L/Ua 

(g) t = 56.37L/Ua 

(b) t = 55.68-&/C/"« 

(d) * = 55.95L/P, 

(f) t = 56.23L/(7o, 

(h) * = 56.51L/J7«, 

Figure 4.7: Contours of axial vorticity of different time on a cross section at x = 0.87L. Angle of 
attack a = 12.5°, Re = 1.96 x ID5, Ma = 0.1 
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In Figure 4.7, frame (a) resembles frame (g). So frames (a) through (g) show one period 
of vortex shedding. The small-scale vortical structures shedding from the leading-edge are in turn 
captured by the primary vortex and feeding into the rolling-up process of the primary vortex. After 
leaving the leading-edge, both A- and B-family vortices experience severe deformation as they are 
stretched and captured by the primary vortex. The flow pattern inside the core of the primary 
vortex resembles that of the spiral instability mode, which is also observed in the experiment (Rieley 
k Lowson, 1998). In the numerical simulation, these small-scale vortical structures dissipate quickly 
as they are leaving the leading-edge and entering the central region of the primary vortex. But in 
the experiment the spiral instability can evolve into transition. The fast dissipation of the spiral 
mode in the numerical simulation can be attributed to the insufficiency of resolution. Because grids 
are clustered near the wall and near the leading-edge of delta wing, in the areas far away from the 
wall the resolution is relatively low. The future effort will be devoted to increasing the resolution 
where the primary vortex locates. 

Because the small-scale vortical structures are shedding continuously from the leading-edge, 
the area near the leading-edge is of particular interesting in present work. The detailed pictures 
of vortex-shedding near the leading-edge is shown in Figure 4.8, where the limiting streamline and 
contours of axial vorticity ofvarious instance on a cross-section at x — 0.87X are displayed. Through 
(a) to (h) in Figure 4.8, the pattern of limiting streamline exhibits a periodic feature. Actually, 
figures (a) to (g) fit in one period of variation. In Figure 4.8(a), there is a secondary vortex 
attaching on the upper surface of delta wing. The strong leading-edge shear layer is shown by dark 
color of the contours of axial vorticity. Near the leading-edge, the shear layer is concentrated in a 
narrow area. In Figure 4.8(b), at t — 55.68L/U03, a small vortex shown by the limiting streamline 
appears near the leading-edge over the free shear layer. In the same picture, a small bulge appears 
on the shear layer. The generation of this small vortex can be attributed to the Kelvin-Helmholtz 
instability. Therefore, the small vortex is named as the Kelvin-Helmholtz (K-H) type vortex. At 
the same time, the secondary vortex, which was attaching on the wing surface at t = 55.54-L/f/oo, 
moves away from the wall. As the K-H type vortex grows, the secondary vortex is pushed further 
away from the wall. From t = 55ML/Uoo to t = 55.95L/?/,», (Figure 4 °(0) to (d)) the secondary 
vortex moves upward and begins to separate from the wall, which is corresponding to the B-family 
vortex, whose rotating direction is opposite to the primary vortex. Therefore, the B-family vortex 
comes from the shedding of the secondary vortex. The generation of the leading-edge K-H type 
vortex also causes the deformation of the shear layer, which is visible from the contours of the axial 
vorticity in Figure 4.8(b), (c), and (d). The bulge on the contours of axial vorticity is corresponding 
to the K-H type vortex. In Figure 4.8(d), the secondary vortex almost disappears and the K-H type 
vortex is still attached to the leading-edge. In Figure 4.8(e) and (f), the K-H type vortex grows in 
size until it reaches the edge of the primary vortex. Another vortex appears at the same location of 
the secondary vortex, actually it is a new secondary vortex. The K-H type vortex gradually moves 
upward and sheds from the leading-edge, and comes out to be the A-family vortex, whose rotating 
direction is the same as the primary vortex. It is obviously that the A-family vortex originates 
from the K-H type leading-edge vortex. The last two frames are the periodic repeating of frames 
(a) and (b) in Figure 4.8. 

The vortex-shedding near the leading-edge is a periodic process. The interaction between the 
secondary vortex and the leading-edge shear layer generates a K-H type vortex. As this K-H type 
vortex grows, the induced flow pushes the secondary vortex away form the wall, and ultimately 
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leads to the shedding of the B-family vortex. The K-H type vortex grows in size as the secondary 
vortex shows up again near the wall. The induced flow pushes the K-H type vortex away form the 
wall and leads to the shedding of the A-family vortex. So the A-family vortex originates from the 
Kelvin-Helmholtz instability of shear flow near the leading-edge. The B-family vortex originates 
from the secondary vortex. The period of vortex shedding is between Q.89L/Uoo and 0.98L/Uoo- 
The scale of the K-H type leading-edge vortex and the secondary vortex is about 0.005L. 

The interpretation of the above phenomena is based on the Kelvin-Helmholtz instability of 
cross-sectional two-dimensional flow. Considering many cross-sections simultaneously, the period 
of vortex shedding is the same, there is only phase difference between one cross-section and the 
other. From a three-dimensional point of view, the A- and B-family vortices become vortex tubes, 
which are oblique to the axial direction. 
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Figure 4.8: Limiting streamline and contours of axial vorticity of different time on a cross section 
at x = 0.87L. Angle of attack a = 12.5°, Re = 1.96 x 105, Ma = 0.1 
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The time series of three components of the instantaneous velocity at a location near the leading- 
edge {x = 0.87L, y - 0.076L, z = 0.0094L) are recorded and shown in Figure 4.9, 4.10, and 4.11. 
This probe point locates on the cross-section shown in Figure 4.7 and Figure 4.8, so that the velocity 
signals can be interpreted in accordance with the two-dimensional vortex shedding pictures. The 
signals of the three components of velocity are all periodic functions of time. The axial velocity 
u has two local maximums and two local minimums within a period. There are only one local 
maximum and one local minimum within a period for the signals of the spanwise velocity v and 
the vertical velocity w. The phase difference between v and w is approximately ir/2, which can be 
interpreted as a result of the small-scale vortical structure passing through the probe. 

Figure 4.9: Instantaneous axial velocity at a location of x — 0.87L, y = 0.076L, z — 0.0094L 

Figure 4.10: Instantaneous spanwise velocity at a location of x = 0.87L, y — 0.076X, z = 0.0094L 

Figure 4.11: Instantaneous vertical velocity at a location of x — 0.87L, y — 0.076L, z — 0.0094L 

In order to compare the axial velocity signal with the vortex and shedding pictures in Figure 4.8, 
a part of Figure 4.9 has been enlarged and shown in Figure 4.12, where those points with the same 
time as the frames of Figure 4.8 have been marked with the same letter through (a) to (g). In 
Figure 4.12, one period starts at point (a) and ends at point (g). Compared with Figure 4.8, it has 
been found that the local minimum at point (d) with a smaller axial velocity value is corresponding 
to the B-family vortex. As the B-family vortex moves through the probe point, as shown in 
Figure 4.8(c) and (d), the axial velocity u decreases from point (c) to point (d) and reaches its 
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local minimum in Figure 4.12. Then the axial velocity recovers as the B-family vortex leaves the 
probe point. It is followed by the shedding of an A-family vortex from the leading-edge. Before the 
central part of the A-family vortex reaches the probe point, the axial velocity u signals recorded 
by the probe increases from point (e) to (f) in Figure 4.12. Then it decreases again from (f) to 
(g) as the core of the A-family vortex moves through the probe. Therefore, the local minimum at 
point (g) is associated with the A-family vortex. The local minimum at point (g) has a relatively 
larger value of axial velocity compared with the local minimum at point (d), which is related to 
the B-farnily vortex. The center of both A- and B-family vortices is low-momentum region. Since 
the B-family vortex originates from the shedding of the secondary vortex near the upper surface 
of the delta wing, and it brings fluid with lower axial velocity, the central part of the B-family 
vortex has a lower momentum. The A-family vortex comes from the shedding of leading-edge K-H 
type vortex. It brings fluid from the free shear layer, which has a relatively larger momentum. In 
Figure 4.12, the local maximum at point (b) is corresponding to frame (b) of Figure 4.8, where both 
the A- and B-family vortices have not separated from the delta wing. The signals of the spanwise 
and the vertical velocity can be interpreted in a similar way. In Figure 4.11, the local maximum 
is corresponding to the passing of a B-family vortex, where the vertical velocity is positive. The 
local minimum is corresponding to the passing of an A-family vortex, where the vertical velocity is 
negative. Thus the period of velocity signals reflects the elapsed time at which the A- and B-family 
vortices are shedding from the delta wing. Thus the period of vortex-shedding can be measured 
as the distance between the peaks of local maximums or local minimums on the signals of three 

velocity components. 

Figure 4.12: Instantaneous axial velocity at location x — 0.87L, y — 0.076L, z — 0.0094L 

In order to estimate the vortex-shedding period more accurately, power spectrums of velocity 
fluctuations are calculated based on the velocity signals and shown in Figure 4.13, 4.14, and 4.15. 
The velocity fluctuation is calculated as the difference between the instantaneous velocity and 
the temporal-averaged mean velocity. There are two peaks in the spectrum of the axial velocity 
fluctuation shown in Figure 4.13. The frequency of the first peak is 1.086[/oo/.L and 2.3ü7oo/L 
for the second peak. There is only one peak in the spectrum of the spanwise and vertical velocity 
fluctuation. The peak frequency is l.QiWoo/L, which is the same as the first peak of the v! 
spectrum in Figure 4.13. This peak frequency value / = 1.086J7oo/£ represents the frequency of 
vortex shedding, the corresponding period is T = 0.9208-L/#oo • The higher frequency in Figure 4.13, 
corresponding to a time period of T — 0A33L/Uoo, reflects the elapsed time between the shedding 
of a A-family vortex and a B-family vortex, which is approximately half the period of the shedding 
of a single A- or B-family vortex. 

The temporal-averaged velocity profiles distributed on a spanwise line above the upper surface 
of the delta wing on a cross section at x = 0.87L is shown in Figure 4.16. The distance between 
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Figure 4.13: Power spectrum density of v! at location x = 0.87L, y = 0.076L, z = 0.0094L 

Figure 4.14: Power spectrum density of t>' at location x = 0.87L, y = 0.076L, z = 0.0094L 

the spanwise line and the wing surface is denoted by the vertical coordinate z in Figure 4.16. 
These results are in good agreement with the experiments carried out by Rieley & Lowson (1998). 
As it was stated by Rieley & Lowson (1998), the axial velocity profile indicates the windward 
boundary layer separation. The inflection point on the axial velocity profile is similar to the 
Kelvin-Helmholtz instability in plane mixing layers. In Figure 4.16(b), the spanwise velocity profile 
near the surface (z=0.0002L) changes sign near y — 0.0746L, which is corresponding to the re- 
attachment point of the secondary vortex. The inflection points on profiles of the vertical velocity 
component in Figure 4.16(c) are corresponding to the edge of the leading-edge shear layer. The 
inflection point moves outboard as the distance from the wing surface increases. The negative 
part of the vertical velocity is corresponding to the secondary vortex. The secondary vortex is 
still visible in the temporal-averaged results. The evidence of vortex shedding has been removed 
by the temporal average procedure.  The point of inflection on the velocity profile is associated 
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Figure 4.15: Power spectrum density of w' at location x — 0.87L, y = 0.076L, z — 0.00941- 

with inviscid instability. Rayleigh's inflection point theorem, studying the instability of a two- 
dimensional velocity profile based on the linear normal mode approach, points out that disturbance 
can be amplified at the point of inflection. The physical interpretation of the theorem was given 
by Lin (1945). The restoring mechanism will force a fluid particle displaced vertically in either 
direction to return to its starting position. But at the point of inflection the restoring mechanism 
is not present and disturbance can grow. In the flow around the slender delta wing, the situation is 
more complex. On the two-dimensional cross section plane, which is vertical to the axial direction, 
a strong shear layer is observed near the leading-edge, as shown in Figure 4.8(a). The existence 
of the secondary vortex increases the strength of the shear layer and provides more chance for the 
generation of the Kelvin-Helmholtz instability. 

4.5    Conclusions 

Direct numerical simulation has been carried out to simulate the flow around a slender flat-plate 
delta wing at 12.5° angle of attack. Two Reynolds number have been selected. At a lower Reynolds 
number of 5 x 104, the flow is stable and dominated by a pair of leading-edge primary vortices. 
At a higher Reynolds number of 1.96 x 105, small-scale votical structures are shedding from the 
leading-edge. It has been found that the shedding of the small-scale vortical structures originates 
not only from the Kelvin-Helmhotz type instability of the leading-edge shear layer, but also from 
the separation of the secondary vortex form the wing surface. The interaction between the sec- 
ondary vortex and the Kelvin-Helmholtz type vortex is of particular interesting. The periods of 
vortex shedding are obtained from the time series of velocity components. The distributions of 
the temporal-averaged velocity near the upper surface of the delta wing obtained from the com- 
putational results agree well with those from the experiment of Rieley & Lowson (1998). But 
the steady small-scale vortical structures observed in the same experiment have not been found in 
the current simulation results. However, some unsteady vortical structures were also observed in 
the experiment, which could be related to the unsteady small vortices found in the computational 
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(a) Profiles of average axial velocity 

(b) Profiles of average spanwise velocity 

(c) Profiles of average vertical velocity 

Figure 4.16: Variations in the three components of temporal-averaged velocity at the leading-edge 
with increasing distance from the wing surface within on a cross section at x = 0.87L 

results. 
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